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ABSTRACT:  This study investigated the effects of an intensive phonologic treatment for anomia 
in aphasia.  The theoretical motivation for this investigation was based on a parallel distributed 
processing model of phonology (Nadeau, 2001).  We proposed that if treatment were directed at 
the level of the phonologic processor (e.g. phonemes and phoneme sequences), opportunities for 
naming via a phonological route, as opposed to a strictly whole word route, would be enhanced, 
thereby improving naming.  Ten individuals with chronic anomia and aphasia due to left 
hemisphere stroke served as participants.  A single-subject, repeated probe design with 
replication across individuals was employed.  The primary outcome measure was confrontation 
naming.  Secondary outcome measures included discourse production (word count and content 
information units), phonologic production and nonword repetition.  Data were analyzed visually 
and statistically.  Results showed a positive treatment effect (improved phonologic production) 
and generalization to confrontation naming and discourse production (word count and content 
information units).  Effects of treatment were maintained 3 months post treatment termination for 
confrontation naming and discourse production (content information units).  The results of this 
study provide sufficient evidence of efficacy to encourage further research.    
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INTRODUCTION 
 

The single most common feature of aphasia, and one of the most debilitating aspects of 

aphasia in most patients, is impairment in ability to name, whether it involves naming seen 

objects, or producing nouns, verbs and other words conveying meaning in spontaneous language 

(Goodglass, 1993).  The traditional treatment approach to this problem is to explicitly train 

aphasic patients in naming.  Controlled studies have shown that this approach may be effective.  

However, typically, generalization is very limited, that is, the knowledge gained by the patient 

tends to be limited to the words actually trained, and there is at best very modest improvement in 

performance with untrained words.  This generalization may be limited mainly to words that are 

semantically related to those in the training corpus (Coelho et al., 2000; McNeil, 1997).  However, 

more generally, the mechanisms underlying generalization are not well understood.  Because 

generalization is so limited with “naming therapies”, there currently exists no viable means of 

training patients on the full corpus of words (perhaps several thousand) they are likely to need in 

daily life, except in the most determined and capable of subjects (Basso, 2003).  Two approaches 

might be taken to solving this problem: (1) develop cost effective means for providing training on 

several thousand words; and (2) develop alternative training methods, e.g., phonological therapy, 

that could potentially generalize widely. In this paper, we describe a connectionist model that 

provides a rationale for phonological therapy and we report the results of the first clinical trial 

motivated by this model. 

 

Connectionist model of phonological function 

The Wernicke-Lichtheim (W-L) information processing model of language function has 

played a dominant role in understanding aphasic syndromes (Lichtheim, 1885) and has stood the 

test of time in defining the topographical relationship between the modular domains (acoustic 

representations, articulatory-motor representations, and concept representations) underlying 

spoken language function. Unfortunately, the W-L information processing model does not specify 

the characteristics of the representations within these domains and how they might be stored in 

the brain. It also does not address the means by which these domains might interact.  We have 
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proposed a parallel distributed processing (PDP) model that uses the same general topography 

as the W-L model (Nadeau, 2001), but also specifies how representations are generated in the 

modular domains and how knowledge is represented in the links between these domains (Figure 

1).  Though not tested through simulations, this model is neurally plausible and provides a cogent 

explanation for a broad range of psycholinguistic phenomena.  More generally, connectionist 

concepts are now deeply embedded in and receive enormous support from mainstream 

neuroscientific research (e.g., (Rolls, 2002; Rolls, 1998)). 

 

INSERT FIGURE 1 ABOUT HERE 

 

 The PDP modification of the W-L model posits that the acoustic domain (akin to 

Wernicke’s area) contains large numbers of units located in auditory association cortices that 

represent acoustic features of phonemes.  The articulatory domain (analogous to Broca’s area) 

contains units located predominantly in dominant frontal operculum that represent discrete 

articulatory features of speech (as opposed to continuously variable motor programs).  The 

semantic or conceptual domain contains an array of units distributed throughout unimodal, 

polymodal and supramodal association cortices that represent semantic features of concepts.  

Within any domain, a representation corresponds to a specific pattern of activity of all the units, 

hence the term distributed representation.  Each unit within each of these domains is connected 

via interposed hidden units to many, if not most, of the units in the other domains.  During 

learning of a language, the strengths of the connections between the units are gradually adjusted 

so that a pattern of activity involving the units in one domain elicits the correct pattern of activity in 

the units of another domain. The entire set of connections between any two domains forms a 

pattern associator network.  The hidden unit regions, in conjunction with nonlinear unit properties, 

enable the association of representations in two connected domains that are arbitrarily related to 

one another (e.g., word sound and word meaning). 

 In PDP models, knowledge is stored as patterns of connectivity not only within domains 

but also between domains. For example, understanding the meaning of a word that is heard is 
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achieved through the connections between the domain that contains the sound features of 

language and the domain that contains concept features (the acoustic-concepts representations 

pattern associator, Figure 1, pathway 6-5).  This pattern associator network corresponds to the 

cognitive neuropsychological concept of a phonological input lexicon (Ellis & Young, 1988).   

 The knowledge that allows a person to translate heard sound sequences into articulatory 

sequences, and thereby mediates repetition of both real words and non-words, is contained in the 

network that connects the acoustic domain to the articulatory motor domain (the acoustic-

articulatory motor pattern associator, Figure 1, pathway 7-3).  Because this network has acquired, 

through experience, knowledge of the systematic relationships between acoustic sequences and 

articulatory sequences, it has learned the sound sequence regularities of the language: the 

phonemic sequences of joint phonemes, rhymes, syllables, affixes, morphemes and words 

characteristic of the language (Nadeau, 2001) (see also (Plaut et al., 1996)).  

 The knowledge that enables a person to translate a concept into a spoken word (the 

phonological output lexicon (Ellis & Young, 1988)) is contained in two different pattern associator 

networks that connect the concept representations domain to the articulatory motor domain 

(Figure 1, pathways 1-2 and 4-3).  These two pattern associator networks support different forms 

of knowledge. The indirect concept representations-articulatory motor pathway (pathway 4-3) 

provides a robust basis for knowledge of sequences and sublexical entities because of the 

sequence knowledge stored in the acoustic-articulatory motor pattern associator.  However, the 

direct concept representations-articulatory motor pattern associator (pathway 1-2) does not 

contain much knowledge of sequences and sublexical entities because it translates spatially 

distributed patterns of activity corresponding to concepts into temporally distributed sequences of 

activity corresponding to articulated words.  This spatial-temporal translation precludes significant 

acquisition of sequence knowledge and makes this fundamentally a whole word pathway. The 

existence of this direct, whole word naming route finds support in studies of subjects with 

repetition conduction aphasia; some appear to have lost most phonological sequence knowledge 

(pathway 3/4-7)(resulting in a severe deficit in auditory verbal short term memory), but can speak 

quite well, producing few if any phonological paraphasic errors, can repeat real words (with 
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evidence of influence by semantic attributes but little influence of word length), and are severely 

impaired in repeating nonwords and functors (Warrington, 1969; Friedrich, 1984; Saffran, 1975; 

Caramazza, 1981).  It also finds some support in reports of subjects with conduction aphasia who 

are able to repeat words better than nonwords (McCarthy, 1984; Caramazza, 1986; Friedrich, 

1984; Saffran, 1975), and who are able to repeat words better when they are given in a sentence 

context than when given as a single word (thereby increasing the likelihood of engaging concept 

representations) (McCarthy, 1984).  However, a model in which the only link from the concept 

representations domain to the articulatory motor domain is the direct one (pathway 1-2) cannot 

account for observations that normal subjects exhibit phonological slips-of-the-tongue, and 

aphasic subjects produce phonemic paraphasias in naming and internally generated spoken 

language quite comparable to those produced during repetition.  To explain these observations, 

one must posit access from concept representations to phonological sequence knowledge, as 

indicated in pathway 4-3 of the model.  Thus, this PDP model predicts that there should be two 

pathways enabling naming of concepts.  We have recently provided further evidence supporting 

this model in a report of a patient who, depending upon type of verbal cue provided, could be 

induced to use either the whole word naming route or the phonological naming route (Roth et al., 

in press)  This model can also readily be mapped to the brain in a way that is consistent with 

established functional-anatomic correlations (Roth, In press). 

 

Implications of the model for treatment of anomia 

 The relationship between word meaning and word form is largely arbitrary.  This is likely 

the reason that learning to name one word provides no basis for generalization to other words 

(except for derivational forms and words that have similarities in meaning) (Plaut, 1996), and that 

to meaningfully alter daily communicative ability, one would have to train hundreds, if not 

thousands of words (as noted in the foregoing).  If the direct pathway of the model, a substantially 

whole word pathway, were the only pathway available to us to name concepts, then we would be 

bound by this constraint.  However, the existence of the indirect pathway opens up another 

possibility.  So long as there are some remnants of this pathway left after a stroke (either in the 
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damaged hemisphere or in the normal hemisphere), that is, so long as there is some existing 

phonological sequence knowledge and some connections between neural networks supporting 

concept representations and the acoustic-articulatory motor pattern associator supporting 

phonological sequence knowledge, then it may be possible to improve word retrieval by 

enhancing phonological sequence knowledge.  This is the fundamental hypothesis that motivates 

this investigation. 

 Studies of language acquisition in young children suggest that first they learn many of the 

various phonological sequence regularities of their language (Gathercole, 1995; Gathercole & 

Martin, 1996).  Subsequently they learn to assemble these various sequences into combinations 

and associate these combinations with concepts (meaning) to enable word comprehension and 

word production.  If this principle of language development also applies to language 

redevelopment after brain injury, it suggests two possibilities: (1) that effective retraining in 

phonological sequence knowledge may generalize to all words containing the trained sequences; 

and (2) that once given an adequate repertoire of phonological sequence knowledge during 

treatment, aphasic patients should be able to continue after therapy to enhance existing but 

inadequate connections between the substrate for concept representations and the substrate for 

phonological sequence knowledge and steadily rebuild their working vocabularies.  It is also 

possible that training some phonological sequences will generalize to other phonological 

sequences (e.g., through shared distinctive feature and motor programming sequences).   

 

Précis of the study 

The primary purpose of this Phase II clinical rehabilitation study was to examine the effect of 

a phonologic based treatment on confrontation naming by individuals with anomic aphasia. We 

used a single-subject ABA design replicated across ten participants. The primary research 

question asked if phonologic treatment would improve confrontation naming. Secondary research 

questions addressed the impact of treatment on 1) generalization to untrained behaviors such as 

discourse production; 2) retention effects at 3-months; 3) phonologic production and 4) nonword 

repetition (potential evidence of phoneme sequence knowledge acquisition).   
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METHODS 

Participants 

Participants were recruited through the VA RR&D Brain Rehabilitation and Research 

Center, Gainesville, Florida under IRB #545-99. Six males and 4 females, with an average age of 

52 years and an average of 59.7 months post stroke onset served as participants. To be eligible 

for the study intervention, subjects had to have had a single left hemisphere stroke (documented 

by imaging with either CT or MRI), be 6-months or more post-stroke, be right handed and 

monolingual English speaking.  Exclusion criteria included significant apraxia of speech, 

depression or other psychiatric illness (unless successfully treated), neurological illnesses (e.g. 

Alzheimer’s disease, Parkinson’s disease), chronic medical illness (e.g. cancer, renal failure), and 

severe impairment in vision or hearing.  Table 1 lists relevant participant demographic 

information.   

 

INSERT TABLE ONE ABOUT HERE 

 

The presence of apraxia of speech was determined perceptually using data gathered 

during the evaluation.  Two speech language pathologists evaluated speech/language behaviors 

and arrived at independent judgments.  Video-taped data from, but not limited to, Western 

Aphasia Battery (WAB)(Kertesz, 1982) picture description, spontaneous conversation, automatic 

speech, repetition of words of increasing length and multiple repetition of 3-syllable words were 

evaluated for the following behaviors: slow rate, prolonged segment durations and intersegment 

durations (including intrusive schwa), distortions, prosodic abnormalities and effortful groping and 

struggling during articulation. Significant apraxia of speech was defined as a limited repertoire of 

speech sounds, speech limited to a few meaningful utterances, automatic speech not better than 

volitional speech, and an inability to repeat isolated phonemes. 

For diagnostic and descriptive purposes, individuals were given a series of standardized 

test batteries pre- and post-treatment to assess linguistic and phonologic function.  To be 
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included in the research protocol, individuals had to have: (1) demonstrated anomic aphasia on 

the Western Aphasia Battery (Kertesz, 1982)  (subtest scores between 5-10 on fluency, 7-10 on 

comprehension, 7-10 on repetition and 0-9 on naming); (2) auditory comprehension sufficient to 

complete the training protocol (score of >30 on the WAB yes/no subtest); (3) score < 45 on the 

Boston Naming Test (Kaplan et al., 1983)(BNT); and (4) evidence of phonological function that 

was present1 but impaired (impaired scores on Comprehensive Test of Phonologic Processing 

(Wagner, R., Torgesen, J., & Rashotte, C. 1998)(CTOPP) and Lindamood Auditory 

Conceptualization) (Lindamood, C. H., & Lindamood, P. C. 1979) (LAC). 

Treatment procedures 

This study investigated a phonologic based treatment using individual phonemes and 

nonword phoneme sequences.  Treatment was administered 2 hours/day, 4 days/week for 12 

weeks for a total of 96 hours by three experienced speech language pathologists. The average 

treatment session length was 1 hour.  The Principal Investigator and a consultant provided 20 

hours of training in administering the phonologic based treatment to the therapists prior to data 

collection.  The PI and consultant observed 25% of the treatment sessions to maintain treatment 

integrity and evaluate clinician performance.  The PI and consultant met with the therapists 1-2 

hours/week in lab meetings to review subject performance.  The treatment program is outlined in 

detail in Appendix A.   

Treatment stimuli 
 

Trained consonants included /p,b,f,v,t,d,k,g,th,th,s,z,sh,zh,ch,j,l,r,w,h,wh,m,n,ng/ and 

trained vowels included /ee,i,e,a,ae,u,o,oe,oo/.  Stimulus selection was based on prior research 

(Conway et al, 1998; Kendall et al 2003; Kendall et al, In Press).  Phonemes were initially 

presented in isolation and upon mastery, sounds were combined into two phoneme combinations 

(CV and VC), three phoneme combinations (CVC, VCC, CCV), and eventually, into two- and 

three-syllable combinations (Appendix A outlines details).  

Experimental Design 

                                                 
1 Phonological paraphasic errors in naming to confrontation or internally generated language; 
some benefit from phonological cueing in naming to confrontation; some ability to repeat 
nonwords. 
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 A single-subject ABA repeated-probe design with replication across 10 participants with 

pre- and post-treatment testing was employed.  Pre- and post-test measures included the 

Western Aphasia Battery (WAB) (Kertesz, 1982), Boston Naming Test (BNT) (Kaplan et al., 

1983), Controlled Word Association Test (COWA) (Benton & Hamsher, 1989), Comprehensive 

Test of Phonological Processes (CTOPP) (Wagner et al., 1998), and the Lindamood Auditory 

Conceptualization Test (LAC) (Lindamood & Lindamood, 1979).   

 During the initial “A”, or no-treatment, phase, eight baseline data points were established 

for treatment (production of trained phonemes), generalization (confrontation naming and 

discourse production) and control (Test of NonVerbal Intelligence-TONI) (Brown et al., 1990) 

probes.  During the “B”, or treatment phase, the same repeated probes were administered after 

every 8 hours of therapy (or 1x/week). The treatment phase was immediately followed by 1-2 

sessions of post-testing in which the repeated probes and standardized tests (described above) 

were administered. Follow-up testing occurred at 3-months.   

Outcome Measures   

 Outcome Measure Description 

 Primary and secondary research questions were answered by the administration, rating, 

and analysis of several outcome measures.  The primary outcome question, generalization of 

treatment to confrontation naming, was addressed by analyzing responses on the 81-item Object 

Action Naming Test (Durks, J., & Masterson, J., 2000). The secondary outcome question, 

generalization to discourse production, was addressed by analyzing word count and content 

information units (CIU) elicited by Brookshire Discourse Production Test (Nicholas, L. E., & 

Brookshire, R. H., 1993).  To assess the impact of treatment on the treated behavior, we 

employed a non-standardized 20-item phoneme production task using consonants trained in 

therapy.  The impact of treatment on acquisition of phoneme sequence knowledge was tested 

using a non-standardized 10-item repetition test employing 2-syllable nonwords comprised of 

trained sounds and sound sequences.   

 Outcome Measure Analysis 
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 All outcome measures were audio-taped using an analogue tape recorder. The therapist 

conducted the scoring online during the session, and this scoring was also later judged by a 

trained rater blind to the time of testing. The Object/Action Naming Test data were scored 

incorrect if productions included semantic or phonologic substitutions. Distortion errors were 

scored as correct.  The discourse sample was transcribed and scored according to standard 

procedure for word count and content information units (CIU).  Phonemes on the phoneme 

production test and nonword repetition test were scored as “plus” if correctly produced or “minus” 

if distortion, phonologic substitution or omission occurred.  Inter-rater reliability was assessed 

using intra-class correlations (ICC) computed for 25% of the repeated probe data.   

 The percentage of the participants’ correct responses was graphed for analysis.  The 

data were then analyzed visually and statistically.  

 Visual Analysis 

 Visual analysis of outcome measure data was completed by three judges, all speech-

language pathologists with at least 3 years experience judging data via visual inspection.  Each 

independently judged the stability of both baseline phases for each participant and then 

considered the relative slope and height of the data displays during the treatment phase. Figure 1 

displays a sample of the graphs the judges used for visual analysis.   

 Statistical Analysis 

 Repeated probe data were analyzed in terms of effect sizes (ES) (Kromrey & Foster-

Johnson, 1996.  The formula used to calculate ES was: 

  ES = (Meantherapy – Meanbaseline)/SDbaseline

 Effect sizes > .8 were considered large, >.5 medium and >.2 small (Cohen, 1988). Paired 

Student’s t-tests were used to analyze standardized test differences before and after treatment.   

 
RESULTS 
 
  
 

INSERT TABLE 2 ABOUT HERE 

 

 Primary Outcome Results: 
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 For the Object/Action Naming Test (confrontation naming), the average ES was 1.63 

(Table 3).  Graphs were judged to show evidence of generalization for 9/10 individuals (Figures 2 

and 3). 

 

INSERT TABLE 3 ABOUT HERE 

 

INSERT FIGURES 2 AND 3 ABOUT HERE 

 

 Secondary Outcome Results 

 For discourse production, of the average ESs were 1.49 (word count) and 1.71 (CIU).  

Graphs were judged to show evidence of generalization for 5/8 individuals (word count) and 4/8 

individuals (CIU).  For phoneme production, the average ES was 6.88 and graphs were judged to 

show evidence of a treatment effect in 10/10 individuals.  For nonword repetition, the average ES 

was .95 and graphs were judged to show evidence of a treatment effect in 5/6 individuals.   

 In analysis of retention of gains 3-months post-treatment termination, the average ES for 

confrontation naming was 1.53 and graphs were judged to show maintenance in 7/8 individuals.  

The average ES’s for discourse were 1.40 for word count and 1.41 for CIU and graphs were 

judged to show maintenance effects in 1/6 for word count and in 4/6 for CIU. The Average ESs 

for phonologic production and nonword repetition were 5.73 and 1.12, respectively, and graphs 

were judged to demonstrate maintenance effects in 5/8 (phonologic production) and 5/6 (nonword 

repetition).  

 Standardized Pre- and Post-test Results: 

 Using Student’s paired t-tests, significant changes in WAB (p=0.001), CTOPP-PA 

(p=0.039), CTOPP-APA (p=0.008) and LAC (p=0.021) scores reflecting acquisition effects 

(immediately post treatment – pre-treatment) were found.  Significant changes in BNT (p=0.017), 

COWA (p=0.011) and LAC (p=0.006) reflecting retention effects (3 months post treatment – pre-

treatment) were found (Table 2).  Data for two subjects (P1 and P2) were not collected on the 



  Kendall et al.   13 

CTOPP due to clinician error.  Two subjects (P2 and P6) failed to return for follow-up testing 

because of intercurrent medical problems and travel distance.  

 Reliability: 
 
 Inter-class correlations assessing inter-rater reliability were 0.97 for confrontation naming, 

0.99 for discourse word count, and 0.70 for discourse CIU.   

 
DISCUSSION 
 
 The current study is a Phase II investigation designed to test the effect of a phonologic 

treatment for anomia in aphasia.  The data from the ten participants provide evidence to support 

our hypothesis that by focusing treatment at the level of the phonologic processor (e.g. phonemes 

and phoneme sequences) it is possible to improve naming, presumably by increasing the 

opportunity for naming via the phonological route.  The effect sizes for the outcome measures 

were large by traditional standards (Cohen, 1988) and within the range of effect sizes in the 

aphasiology literature (Robey, 1999).  It is also noteworthy that subjects demonstrated a mean 

gain by three months after completion of therapy of 9.5 points on the BNT and 5.12 points on the 

COWA; both changes were statistically significant.  Most of these gains were achieved after 

completion of therapy.  This finding provides tentative support for our corollary hypothesis that 

once given an adequate repertoire of phonological sequence knowledge during treatment, 

aphasic subjects with anomia may, on their own, be able to continue after therapy to enhance 

connections between the substrates for concept representations and phonological sequence 

knowledge and thereby continue to build their working vocabulary. 

 The therapy reported here is the first version of phonologic treatment developed in our 

laboratory.  We regard these initial results as providing only tentative evidence of efficacy.  Our 

experience with these first 10 subjects has provided a number of ideas for modifications of the 

therapy that might enhance or better measure efficacy, discussed below. 

 In this study, all subjects with anomia, largely spared comprehension, and evidence of 

both some residual phonological sequence knowledge and impairment in that knowledge were 

recruited.  While subjects with severely impaired phonological perception were able to learn 

individual sounds, as evidenced in repeated probe phonologic production, they showed less 
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generalization to nonword repetition and confrontation naming. This suggests that subjects with 

severely impaired phonological perception are not likely to be good candidates for this treatment. 

 This study employed 96 hours of treatment.  It is possible that eventually, with a 

sufficiently effective treatment and sufficiently good empirical demonstration of effectiveness, 

medical economic calculations would justify 96 hours of treatment.  However, there is no question 

that our treatment, as currently designed and implemented, has unacceptably low efficiency. 

Visual inspection of our probe measure suggests that, even for variables marked by more gradual 

gains (e.g., confrontation naming, nonword repetition), to the extent that there were gains, they 

had been substantially achieved by 60 hours.  It may also be possible to alter the therapy such 

that gains/hour of treatment are increased.  One way might be to limit treatment to common 

phonemes and phoneme sequences (phonemes and sequences of high phonotactic probability 

(Vitevitch & Luce, 1999). Work in children has recently shown that common phonemes and 

phonological sequences and the ability to link these sequences to semantic representations are 

acquired more rapidly than are uncommon phonemes and sequences (Storkel, 2001). 

 Another manipulation of the therapy that could potentially improve its efficiency would be 

to incorporate real words into the training process.  The hypothesis to be tested is that the 

incorporation of real words will improve outcome by enhancing Hebbian learning in the process of 

phonological sequence knowledge acquisition.  The training in the current study utilized auditory, 

visual and tactile-kinesthetic input to develop phonological sequence knowledge.  Because we 

did not use real words, we did not take advantage of potential top down effects of residual lexical 

semantic knowledge (in either hemisphere) that might have enhanced co-activation of phonemes 

in specific phonological sequences, thereby increasing the opportunity for Hebbian learning to 

occur that would increase binding of the phonemes into sequences. 

 Finally, it is likely that our outcome measures were not adequate.  All subjects 

demonstrated evidence of learning the phonemes (repeated probe phoneme production). Most 

subjects showed significant gains in repetition of nonwords incorporating trained sequences. 

Some showed modest gains on standard measures of naming (e.g., the Object/Action Naming 

Test) (Durks & Masterson, 2000) and discourse production in response to pictures (the 



  Kendall et al.   15 

Brookshire Discourse Production pictures) (Nicholas & Brookshire, 1993). However, subjects and 

families commonly reported major improvements in ability to communicate in daily life.  It is 

uncertain whether these reports reflected a genuine but not measured improvement in 

communicative ability, or merely a perception of improvement that was an artifact of the training 

experience.  It did appear that our discourse stimuli (the Brookshire Discourse Production 

pictures) tended to elicit confrontation naming rather than internally generated language.  

Therefore, future research should incorporate a conversational discourse production assessment. 
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 Table 1.  Subject demographic information 
 

 

Subject Age Gender Education 
Level 

Duration 
Post Onset 

(mo) 

Lesion Localization 

1 41 F 14 26 Left putamenal hemorrhage; cavity involving entire left 
putamen, extending posteriorly into optic radiations, 
superiorly into lenticulostriate endzone, anteriorly well 
into anterior limb of internal capsule. Contiguous large 
cavity in left frontal lobe with sparing of most medial, 
superior, and lateral portions 

 40 F 18 18 Left hemisphere anterior and middle cerebral artery 
(MCA) distribution infarct with dense involvement of left 
anterior cingulate cortex and subjacent white matter, 
and patchy involvement of left posterior frontal and 
parietal cortex including immediately subjacent white 
matter but sparing the deep hemispheric white matter 

3 50 M 12 46 Left MCA distribution infarction involving extensive 
frontal and anterior temporal cortex, much of putamen, 
insula and lenticulostriate endzone, probably sparing 
posterior superior temporal gyrus 

4 49 M 21 53 Left MCA distribution infarct involving operculum, 
extensive portions of frontal cortex and contiguous 
dorsal parietal cortex; temporal lobe and lenticulostriate 
endzone largely spared 

5 61 M 14 105 6 cm anterior-posterior diameter left MCA distribution 
infarct involving operculum and surrounding frontal, 
parietal and temporal cortex, putamen, insula and 
posterior two thirds of lenticulostriate endzone 

6 65 F 12 16 Left putamenal hemorrhage with involvement of 
adjacent frontal, temporal and parietal white matter. 

7 48 M 12 72 Left MCA territory infarct involving striatocapsular 
region, insula, and extensive portions of frontal 
convexity cortex 

8 76 M 12 120 Left MCA territory infarct involving striatocapsular 
region, insula, lenticulostriate endzone, and frontal 
convexity cortex 

9 46 F 12 60 Left MCA aneurysmal rupture with associated 4 by 4 cm 
hemorrhage into putamen and deep frontal, temporal 
and parietal white matter 

10 48 M 12 81 8 cm anterior posterior diameter left MCA infarct 
involving operculum and fronto-parietal convexity cortex 
extending up to anterior cerebral artery territory and 
deep to ventricular surface 
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Table 2.  Acquisition and Retention Data for Pre- and Post-treatment testing.   
Western Aphasia Battery (WAB), Boston Naming Test (BNT), Controlled Oral Word Association Test 
(COWA), Comprehensive Test of Phonologic Processes (CTOPP)(PA = phonologic awareness/real 
words)(APA = alternate phonologic awareness/nonwords) and Lindamood Auditory Conceptualization (LAC). 
 
Immediately post treatment termination - Pre-treatment (ACQUISITION) 
  n mean diff SD p-value 
WAB 10 5.70 3.80 *0.001 
BNT 10 1.8 5.39 0.319 
COWA 10 0.90 3.18 0.394 
CTOPP-PA 8 7.88 8.77 *0.039 
CTOPP-APA 8 9.38 7.25 *0.008 
LAC 10 16 18.2 *0.021 
      
Post 3-months - Pre-treatment (RETENTION) 
  n mean diff SD p-value 
WAB 8 2.62 11.7 0.633 
BNT 8 9.50 8.60 *0.017 
COWA 8 5.12 4.22 *0.011 
CTOPP-PA 7 5.43 10.8 0.233 
CTOPP-APA 7 8.71 7.85 0.26 
LAC 8 10.6 7.74 *0.006 

* Significant at p < .05; because these are all secondary outcome measures, statistics were not 
corrected for multiple comparisons.
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Table 3.  Repeated probe results primary and secondary outcome measures (effect size and 
visual inspection) 
 

 Primary Outcome 
Confrontation Naming 

Secondary Outcome 
Discourse Production 

Word Count 

Secondary Outcome 
Discourse Production 

CIU 

Secondary Outcome 
Phonologic production 

Secondary Outcome 
Nonword repetition 

 effect 
size 

Visual 
inspection 

effect 
size 

Visual 
inspection 

effect 
size 

Visual 
inspection 

effect 
size 

Visual 
inspection 

effect 
size 

Visual 
inspection 

Post  
1-week 

1.63 9/10 1.49 5/8 1.71 4/8 6.88 10/10 .95 5/6 

Post  
3-mos 

1.53 7/8 1.40 1/6 1.41 4/6 5.73 5/8 1.12 5/6 
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Figure 1.  Connectionist model of phonological processing 
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Figure 2.  Primary outcome measure – Object/Action Naming Test.  Repeated probe data for patients 1 
- 5.  Graphs reflect percent accurate production for baseline, treatment and post-treatment phases. 
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Figure 3.  Primary outcome measure – Object/Action Naming Test.  Repeated probe data for 
patients 6 - 10.  Graphs reflect percent accurate production for baseline, treatment and post-
treatment phases. 
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APPENDIX A:  Treatment Description  
 
Stage I Treatment – Consonants/Vowels in Isolation: 
• Background for Stage 1:  Stage one includes exploration of sounds, teaching motor 

descriptions, perceptual, production and graphemic tasks.  Stage I is performance-based. 
Progression to Stage II is dependent upon 80% accuracy on treatment tasks over 3 treatment 
sessions.  

• The subject is seated at a treatment table directly across from the therapist.  A mirror is 
placed on the table for the participant to use for visual feedback for recognition and correction 
of errors.  Trained sounds include consonants 
/p,b,f,v,t,d,k,g,th,th,s,z,sh,zh,ch,j,l,r,w,h,wh,m,n,ng/ and vowels /ee,i,e,a,ae,u,o,oe,oo/. 
Consonant minimal pairs are represented by one picture.  For example, the picture 
illustrated is for sounds /t/ and /d/.  Voiced/voiceless contrasts are distinguished verbally 
by the term noisy (voiced) and quiet (voiceless). Mouth pictures are presented to the 
participant one at a time (e.g. minimal pair).  Sounds are introduced in the following 
order:  /p,b/, /f,v/, /t,d/, /k,g/, /th, th/, /s,z/, /s, sh/. One vowel is introduced following each 
minimal pair in the following order /ee, i, e, a, ae/.   The sequence of tasks is described 
below.  Following “exploration of sounds”, the perception, production and graphemic 
exercises are used interchangeably throughout one treatment session.   

• Exploration of sounds: 
o The participant is shown one mouth picture and asked to look in the mirror and 

repeat after the therapist to make the sound.   
o Knowledge of results (KR) is given at 100% frequency following each production.  
o Following KR, the therapist asks the participant what they saw and felt when the 

sound was made.  Socratic questioning is used to enable the participant to 
“discover” the auditory, visual, articulatory and tactile/kinesthetic attributes of the 
sounds.  

o Socratic questioning examples: “What do you feel when you make that sound? 
What’s moving? What do you see? Is it a quiet (unvoiced), or noisy (voiced) 
sound?”  

o Through practice and repetition the participant becomes adept at recognizing 
what they actually need to feel, see, hear and do to make the sound.  The 
participant is encouraged to check themselves with their eyes (using mirror), ears 
and what they feel.   

o The voiced or voiceless cognate of that sound is introduced using the above 
steps.   

• Motor description 
o A description of each sound is provided.   
o The therapist describes what articulators are moving and how they move (e.g. for 

/p/ the lips come together and blow apart, the voice box is turned off, the tongue 
is not moving).   

o The subject is asked to repeat the sound and then asked to describe how the 
sound was made. 

o 100% KR is provided. 
o Socratic questioning is used to probe the participant about motor description.  

For example, “Does your lips or tongue move to make that sound?” “Did your lips 
blow apart or stay together?” 

• Perception Task  
o The therapist makes a sound (e.g. /p/) and asks the participant to choose that 

sound from an array of pictures (e.g. /f/, /g/, /p/). 
o Following each response, 100% KR is provided. 
o Socratic questioning is used for correct and incorrect responses. 

• Production Tasks (used interchangeably) 
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o Production of sounds can be elicited auditorily (repetition), visually (mouth 
picture), and via motor description (e.g. make the sound where your lips come 
together and blow apart). 

o Following each production, 100% KR is provided. 
o Socratic questioning is used for correct and incorrect responses.  For example, 

“you said /b/, is that the sound where you tongue tips at the roof of your mouth?”   
• Graphemes 

o Graphemic tiles representing sounds are placed on the table with the mouth 
pictures.  The subject is given time to review the tiles and corresponding pictures, 
then the therapist removes all tiles.   

o The participant is asked to select a single grapheme and place it on a picture that 
represents that sound.   

o When they are finished the therapist uses Socratic questioning (e.g. this letter 
says “/f/”, does this picture represent the sound /f/?).   

o If correct, the therapist moves onto the next letter tile, if incorrect the therapist 
sets aside the letter tile and moves onto the next tile.   After all sounds are 
reviewed, only the correct letters remain on the pictures.  The letter tiles that 
were incorrectly placed now are systemically placed on the correct picture.  In 
order to do so the therapist says “This tile says /f/, what is working to make that 
sound?  The participant says “lips and teeth”. The therapist says “correct” and 
asks what picture represents moving lips?  The participant points to the mouth 
picture depicting /f/. 

o After the subject is able to correctly match graphemes to mouth pictures, 
graphemes are then used in production and perception tasks described above.  
For example, in a production graphemic task, the therapist would place the tile /p/ 
in front of the subject and ask them to produce that sound.   

o 100% KR is provided (E.g. “that is correct” or “that is incorrect”).  Both correct 
and incorrect responses are reviewed using Socratic questioning (e.g. “What 
moved to make that sound?” “Is that sound noisy/quiet”) 

 
Stage II Treatment – Syllables
• Background for Stage II.  The purpose of this stage is to extend skills acquired in Stage I to 

various phonemic combinations. Production, perception and graphemic tasks remain the 
same with the one difference that sounds are produced in combinations rather than isolation.  
Training progresses hierarchically (e.g. VC, CV, CVC, CCV, VCC, CCVC, CVCC, CCVCC). 
Upon mastery of 1-syllables, 2-syllable stimuli are composed using various combinations of 
1-syllable stimuli.  Only nonword sound combinations are used. Stage II is performance-
based and the subject progresses through a hierarchy from 1-, 2- and 3-sound one-syllable 
words to 2-syllable combinations based on 80% accuracy over 3 treatment sessions.  

• Perception Task 
o The therapist produces a sound combination.  Depending where the subject is in 

the treatment hierarchy, the sound combination could be VC, or VCC-VC).  
o The therapist asks the participant to arrange pictures or graphemes to depict the 

target.  
o For example, if the subject heard VC (ip), they would select the graphemes /i/ 

and /p/. 
o Following each response, 100% KR is provided. 

• Production Task 
o The therapist shows a mouth picture or grapheme tiles and asks the participant 

to produce those sounds individually, then blended.  For example, the participant 
would say “/p/ /ee/ /f/” that says /peef/.  

o For both correct and incorrect responses, Socratic questioning is used.  In this 
example, the therapist says “You said /peef/, does that match these letters?” 

o Next, the therapist changes one sound in the word (e.g. /peef/ changed to /feef/).  
The participant is cued to say the old word by touching each sound individually, 
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then identifying the new sound and blending the new word (e.g. the old word 
says /p/ /ee/ /f/, /p/ was removed and /f/ was added, the new word says /feef/). 

o Making one sound change is done for a series of 5-10 nonwords.    
• Subjects progressed through the treatment hierarchy based on performance.  All subjects 

terminated therapy at 96 hours.  
 


