
The cardinal deficit of people with aphasia (PWA) is anomia (Goodglass & Wingfield, 1997). 

This deficit is believed to be indicative of disruption of two cognitive processes: (i) accessing a 

semantic description of the target concept, and/or (ii) retrieval of a fully phonologically specified 

representation (e.g., Dell, 1986). During discourse, in addition to these core processes that serve 

word retrieval, production also depends on “…factors external to the lexicon…” (p. 169, 

Wilshire & McCarthy, 2002). The latter processes might influence the selection of lexical items 

based on syntactic, structural, and/or pragmatic criteria that can be either automatic or meta-

cognitive. 

One of the goals of our line of research is to investigate one aspect of how lexical items 

are deployed during discourse in PWA: lexical diversity (LD). LD is related to the range of 

vocabulary exhibited in a language sample (Durán, Malvern, Richards, & Chipere, 2004) and 

reflects a speaker’s capacity to access and retrieve lexical items during discourse. One of the 

greatest challenges in the study of LD is the identification of a robust index to capture LD. The 

tools that have been frequently used by researchers are known to covary with sample length, thus 

yielding mathematically and conceptually spurious results (see Tweedie & Baayen, 1998). 

In recent years, several novel techniques from the field of computational linguistics have 

been developed to assess the breadth of one’s vocabulary during discourse. Though all of the 

techniques assert to measure LD, each one is based on its own theoretical assumptions, which is 

reflected in the estimation machinery they employ. Further, some of these measures have more 

evidence to justify the validity of their score interpretations (e.g., D; Durán et al., 2004; Malvern 

& Richards, 1997, 2000; Richards & Malvern, 1997a, 1998), some have less (e.g., Maas; Maas, 

1972; Measure of Textual Lexical Diversity [MTLD]; McCarthy, 2005; McCarthy & Jarvis, 

2010), and some have none (Moving Average Type Token Ratio [MATTR]; Covington & McFall, 

2010) other than face validity. Also, the validity of measures that were considered the golden 

standard in terms of quantifying LD, such as D and Maas, has been questioned (Fergadiotis, 

2011).  

Our main goal is to supplement our understanding regarding the validity of the scores 

generated by different LD estimation techniques. At this time very little is known about the 

performance of these indices in the discourse produced by PWA. The degree to which these 

techniques reflect LD and little of anything else is critically related to the development of 

psychometrically sound measurement procedures for diagnostic and treatment efficacy purposes.  

Four techniques will be explored: D, Maas, MTLD, and MATTR. Specific questions to 

be addressed include: 

 

i. Do all the techniques generate scores that are manifestations of the same construct (i.e., 

LD)?  

ii. Is there a single latent variable determining performance for each estimation technique or 

is there evidence of construct irrelevant variance? 

 

Method 

Participants. Language samples from 120 PWA from AphasiaBank, an online shared 

database that collects and analyzes digital recordings of the discourse of PWA across a series of 

tasks, are included. All participants have aphasia secondary to a left hemisphere stroke. PWA 

met the following inclusion criteria: (a) chronic aphasia (minimum = 6 months post onset); (b) 

no reported history of psychiatric or neurodegenerative disorders; (c) aided or unaided normal 

hearing acuity; (d) corrected or uncorrected normal visual acuity; and (e) English as their 



primary language. All PWA were administered the Western Aphasia Battery-Revised (Kertesz, 

2007), the Boston Naming Test (Goodglass & Kaplan, 2001), and several subtests from the 

Reading Comprehension Battery for Aphasia, Second Edition (LaPointe & Horner, 1998). 

Stimuli & Instructions. Language samples consist of responses to a story retell task 

designed to elicit narrative discourse (retell of the story Cinderella).  

Transcription & Language Sample Preparation. Samples are digitally recorded and then 

orthographically transcribed in the CHAT format that is compatible with a set of programs called 

Computerized Language Analysis (CLAN; MacWhinney, 2000). Samples were then coded using 

word-level codes to indicate different types of paraphasias, repetitions, and interjections. Each 

word in the samples was also tagged morphosyntactically.  

XML Code. Our goal is to perform a lemma-based analysis of only content words. 

Currently we are in the last stages of developing a set of rules using Extensible Markup 

Language (XML) with the following combinations of optional functions: (i) retrieve items that 

belong in specific word classes, (ii) retrieve lemmata or the fully inflected word forms, (iii) 

ignore, use, or replace paraphasias with the target words, and (iv) export output in .txt format one 

word per line. Once completed, the XML code would allow the user to simply define the 

parameters of interest to analyze multiple language samples simultaneously.  

Estimating LD. Four indices of LD are selected. The first index, D (cf. MacWhinney, 

2000) combines an algebraic transformation model and curve fitting to estimate LD and there is 

some evidence to support that it is relatively robust to length variation (e.g., McKee, Malvern, & 

Richards, 2000). The second index that is used in this study Maas (Maas, 1972) that is a 

logarithmic transformation of the type token ratio. Another tool that has been proposed recently 

for estimating LD (McCarthy, 2005) is the MTLD. MTLD reflects “…the mean length of 

sequential token strings in a text that maintain a given TTR value” (McCarthy & Jarvis, 2010, pp. 

384). Conceptually, for any given sample, MTLD reflects how many words in a row a speaker 

can maintain a certain TTR. The last index of LD is the MATTR (Covington, 2010). MATTR 

estimates LD by using a smoothly moving window that estimates type-token ratios for each 

successive window of fixed length.  

 

Preliminary Results and Discussion 

Preliminary analyses have been conducted using 112 language samples. Both function 

words and content words were included; the analysis was not lemma-based. Two confirmatory 

factor analytic (CFA) models were estimated in Mplus 6.1. These included a unidimensional 

CFA that stipulated that every technique was a “pure” indicator of LD and a CFA model that 

allowed for correlated errors for the D and Maas techniques. Based on Fergadiotis (2011), the 

latter model assumed D and Maas scores were systematically influenced by additional factors, 

suggesting that they reflected something else over and above LD.  

Based on several fit indices, the second model fit the data considerably better (Figures 

1&2). Results indicate that even though these measures employ different computational 

machineries and make different theoretical assumptions, they all reflect the same construct. 

However, the model fit to the data adequately only after the error terms for D- and Maas-

generated scores were allowed to covary. So, consistent with previous findings, D and Maas may 

reflect something else over and above the LD of the language samples (probably length effects).  

Importantly, the magnitude of the loadings suggests that MATTR and MTLD were the strongest 

indicators of the underlying trait, i.e. they reflected more strongly the variable of interest – 

lexical diversity.  



Currently, we are in the process of finalizing the XML code and performing a lemma 

based analysis of content words only with the four measures. Results will be discussed with an 

emphasis on the clinical and research utility of the four estimation techniques. 
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Figure 1. Model 1: χ
2
 = 66.98, p < .001, Root Mean Square Error of Approximation = .54 

(90% CI = .43 - .65), Standardized Root Mean Square Residual = .10 

 

 
 

Figure 2. Model 2: χ
2
 < .01, p = .93, Root Mean Square Error of Approximation < .01, 

(90% CI = .00 - .06), Standardized Root Mean Square Residual = .003 
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