Introduction

Research has shown that therapy can significantly improve the communicative
success of patients with aphasia. In spite of progress made in the field of aphasia
rehabilitation, questions remain regarding the influence of factors such as severity of
aphasia and measures of cognitive and linguistic ability on language recovery. A major
limitation currently facing clinicians is the inability to predict therapy outcomes or tailor
treatment to individuals.

We aim to introduce a fundamentally new approach that looks beyond language,
proposing that the answer to developing efficacious, individually tailored therapies lies in
a better understanding of the supporting systems and networks of general learning.
Learning is integral to the processes of forming associations, recalling information and
applying rules (Seger & Miller, 2010 for review). Learning requires attention, strategy
use, feedback monitoring and integration, skills likely to contribute to the process of
achieving gains through therapy. Thus, we suggest that predicting whether a patient will
improve following therapy instruction may depend more upon that individual’s ability to
learn new information in general than upon a specific ability to relearn or re-access
language.

In support of this hypothesis are recent neuroimaging studies that have found
success with language therapy to be associated with structures and functional networks
associated with learning and memory; rather than with structures considered essential to
language (Goldenberg & Spatt, 1994; Meinzer et al., 2010; Menke et al., 2009). In
addition, a recent study by Vallila-Rohter & Kiran (2013) suggests that patients with
aphasia vary in their ability to learn non-linguistic categories.

We propose that learning ability is yet another factor that contributes to treatment
outcomes. In the current study we explore the relationship between learning ability and
progress with language therapy. We hypothesize that non-verbal learning phenotype
(learning slope) will be positively associated with treatment outcomes.

Methods

Participants

To date, 28 patients with aphasia (16 males) have participated, with 10 additional
patients anticipated to complete the study. Ages range from 34 to 87 (mean = 60.4). All
participants had a single left hemisphere stroke, were premorbidly right handed and were
at least six months post stroke at the time of the study. All participants were tested on the
Western Aphasia Battery (WAB, Kertesz, 1982), Boston Naming Test (BNT; Kaplan,
Goodglass, & Weintraub, 1983) and Cognitive Linguistic Quick Test (CLQT; Helm-
Estabrooks, 2001) to obtained standardized cognitive-linguistic measures. All
participants presented with sentence comprehension deficits and were enrolled in a
sentence comprehension treatment described below. Participants also completed non-
linguistic category learning tasks.

Procedures

Treatment. Prior to initiating therapy, patients completed three baselines as part
of a single subject, multiple baseline design (Thompson, 2006). During therapy, patients
were either presented with pictures depicting the action of a sentence or with paper dolls



representing nouns in the sentence (see Kiran et al., 2012). Pictures or paper dolls were
used in therapy to demonstrate the thematic roles of each constituent of target sentences.
During weekly monitoring batteries, patients were either instructed to select the
illustration of the target sentence from a field of two; or were asked to use paper dolls to
enact thematic roles.

Therapy continued for ten weeks or until patients reached 80% accuracy on
monitoring batteries for two consecutive weeks. After treatment was terminated, patients
completed three post-treatment monitoring batteries.

Learning task. Stimuli for the learning task are fictional animals, first
implemented by Zeithamova et al. (2008) and utilized in Vallila-Rohter and Kiran’s
(2013) study. Animals vary on ten binary dimensions (color, body shape, pattern, etc)
and are organized into two categories based on the number of features shared with each
of two prototypical animals. In this manner, categories are continuous, with an internal
structure. Categorization rates are expected to match the percentage of feature overlap
with each prototype (i.e. animals with an 80% feature overlap with prototype A are
expected to be labeled as category A in 80% of trials and category B in 20% of trials).

Learning tasks were computer based and comprised of ten-minute training and
ten-minute testing phases. In training, animals were presented one at a time on a
computer screen and participants were instructed to guess to which of two categories
each animal belonged. After a button response was made, participants received feedback
in the form of a check mark or an “x” indicating whether their response was correct or
incorrect. Participants were instructed to attend to all features.

In testing phases that followed training, participants categorized novel animals
and prototypes, this time receiving no feedback related to accuracy. Data collected on
accuracy rates quantified patient abilities to quickly integrate feedback and successfully
learn novel categories.

Data Analysis

Treatment data. For treatment data, effect sizes were calculated for each patient
based on average pre-treatment and post-treatment probe scores divided by the standard
deviation of the baseline. This measure was selected as a better match for learning slope
than an overall percent change.

Category learning data. Research has suggested that participants can use
multiple strategies in probabilistic category learning (Gluck et al., 2002). For the current
study, we were interested in examining learning results obtained through multi-cue
strategies, as these approaches place the highest demands on hypothesis formation,
testing, feedback monitoring and integration. Raw data were examined to identify
patients who attended to only one feature (produced an 85% to 100% cue-outcome
response rate on a single feature).

Next, accuracy scores were converted into %B responses and analyzed as a
function of feature overlap with prototype B. Individual results were reduced to a single
slope score (learning phenotype), a slope of positive ten representing ideal learning.

Results
Preliminary analyses of category learning data revealed that despite instructions to
attend to all features, 8 out of 28 patients used a one-cue strategy. We suspect that the



demands of multi-dimensional learning may be too complex for these patients. Slope
data from these 8 participants were not included in further analyses. Raw scores for the
remaining 20 patients suggested the use of a multi-cue strategy, in which category
responses were based on multiple animal features.

Analyses of effect size and learning phenotype (slope) produced a significant
correlation, r(18) = .52, p =.02. Interestingly, none of the other correlations with effect
size were significant, AQ, r(17) = .03, p = .88; BNT score, r(18) =-0.06, p =.78;
attention, r(18) = .23, p = .32; memory, r(18) = .33, p = .16; executive function, r(18) =
.31, p =.18; and visuospatial scores, r(18) = .37, p =.11. In addition, learning
phenotype was not correlated with severity of aphasia AQ r(17) = .05, p = .84 or any
additional cognitive-linguistic measure.

Discussion

These results support the hypothesis that non-verbal learning phenotype is
positively associated with treatment outcomes. We propose that many skills necessary
for successful non-linguistic category learning (stimulus processing, hypothesis
formation, feedback monitoring and integration) likely play an important role in the
relearning or re-accessing of language brought about through therapy. Effect size was
not associated with additional cognitive-linguistic measures, nor was learning phenotype
predicted by these measures. Findings support the proposal that learning ability is an
additional, unexplored factor contributing to aphasia rehabilitation with the potential for
improving the predictability of outcomes.
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