
 
Introduction 

Research has shown that therapy can significantly improve the communicative 

success of patients with aphasia.  In spite of progress made in the field of aphasia 

rehabilitation, questions remain regarding the influence of factors such as severity of 

aphasia and measures of cognitive and linguistic ability on language recovery.  A major 

limitation currently facing clinicians is the inability to predict therapy outcomes or tailor 

treatment to individuals.   

We aim to introduce a fundamentally new approach that looks beyond language, 

proposing that the answer to developing efficacious, individually tailored therapies lies in 

a better understanding of the supporting systems and networks of general learning.  

Learning is integral to the processes of forming associations, recalling information and 

applying rules (Seger & Miller, 2010 for review).    Learning requires attention, strategy 

use, feedback monitoring and integration, skills likely to contribute to the process of 

achieving gains through therapy.  Thus, we suggest that predicting whether a patient will 

improve following therapy instruction may depend more upon that individual’s ability to 

learn new information in general than upon a specific ability to relearn or re-access 

language.   

In support of this hypothesis are recent neuroimaging studies that have found 

success with language therapy to be associated with structures and functional networks 

associated with learning and memory; rather than with structures considered essential to 

language (Goldenberg & Spatt, 1994; Meinzer et al., 2010; Menke et al., 2009).  In 

addition, a recent study by Vallila-Rohter & Kiran (2013) suggests that patients with 

aphasia vary in their ability to learn non-linguistic categories.   

We propose that learning ability is yet another factor that contributes to treatment 

outcomes.  In the current study we explore the relationship between learning ability and 

progress with language therapy.  We hypothesize that non-verbal learning phenotype 

(learning slope) will be positively associated with treatment outcomes.   

 

Methods 

Participants  

To date, 28 patients with aphasia (16 males) have participated, with 10 additional 

patients anticipated to complete the study.  Ages range from 34 to 87 (mean = 60.4).   All 

participants had a single left hemisphere stroke, were premorbidly right handed and were 

at least six months post stroke at the time of the study.  All participants were tested on the 

Western Aphasia Battery (WAB, Kertesz, 1982), Boston Naming Test (BNT; Kaplan, 

Goodglass, & Weintraub, 1983) and Cognitive Linguistic Quick Test (CLQT; Helm-

Estabrooks, 2001) to obtained standardized cognitive-linguistic measures.  All 

participants presented with sentence comprehension deficits and were enrolled in a 

sentence comprehension treatment described below.  Participants also completed non-

linguistic category learning tasks.    

 

Procedures 

Treatment.  Prior to initiating therapy, patients completed three baselines as part 

of a single subject, multiple baseline design (Thompson, 2006).   During therapy, patients 

were either presented with pictures depicting the action of a sentence or with paper dolls 



representing nouns in the sentence (see Kiran et al., 2012).  Pictures or paper dolls were 

used in therapy to demonstrate the thematic roles of each constituent of target sentences.  

During weekly monitoring batteries, patients were either instructed to select the 

illustration of the target sentence from a field of two; or were asked to use paper dolls to 

enact thematic roles.   

Therapy continued for ten weeks or until patients reached 80% accuracy on 

monitoring batteries for two consecutive weeks.  After treatment was terminated, patients 

completed three post-treatment monitoring batteries.  

Learning task.  Stimuli for the learning task are fictional animals, first 

implemented by Zeithamova et al. (2008) and utilized in Vallila-Rohter and Kiran’s 

(2013) study.  Animals vary on ten binary dimensions (color, body shape, pattern, etc) 

and are organized into two categories based on the number of features shared with each 

of two prototypical animals.  In this manner, categories are continuous, with an internal 

structure.  Categorization rates are expected to match the percentage of feature overlap 

with each prototype (i.e. animals with an 80% feature overlap with prototype A are 

expected to be labeled as category A in 80% of trials and category B in 20% of trials).   

 Learning tasks were computer based and comprised of ten-minute training and 

ten-minute testing phases.  In training, animals were presented one at a time on a 

computer screen and participants were instructed to guess to which of two categories 

each animal belonged.  After a button response was made, participants received feedback 

in the form of a check mark or an “x” indicating whether their response was correct or 

incorrect.  Participants were instructed to attend to all features.   

 In testing phases that followed training, participants categorized novel animals 

and prototypes, this time receiving no feedback related to accuracy.  Data collected on 

accuracy rates quantified patient abilities to quickly integrate feedback and successfully 

learn novel categories. 

 

Data Analysis  

Treatment data.  For treatment data, effect sizes were calculated for each patient 

based on average pre-treatment and post-treatment probe scores divided by the standard 

deviation of the baseline.  This measure was selected as a better match for learning slope 

than an overall percent change. 

Category learning data.  Research has suggested that participants can use 

multiple strategies in probabilistic category learning (Gluck et al., 2002).  For the current 

study, we were interested in examining learning results obtained through multi-cue 

strategies, as these approaches place the highest demands on hypothesis formation, 

testing, feedback monitoring and integration.  Raw data were examined to identify 

patients who attended to only one feature (produced an 85% to 100% cue-outcome 

response rate on a single feature).   

Next, accuracy scores were converted into %B responses and analyzed as a 

function of feature overlap with prototype B.  Individual results were reduced to a single 

slope score (learning phenotype), a slope of positive ten representing ideal learning.   

 

Results 

Preliminary analyses of category learning data revealed that despite instructions to 

attend to all features, 8 out of 28 patients used a one-cue strategy.  We suspect that the 



demands of multi-dimensional learning may be too complex for these patients.  Slope 

data from these 8 participants were not included in further analyses.  Raw scores for the 

remaining 20 patients suggested the use of a multi-cue strategy, in which category 

responses were based on multiple animal features.   

 Analyses of effect size and learning phenotype (slope) produced a significant 

correlation, r(18) = .52, p = .02.  Interestingly, none of the other correlations with effect 

size were significant, AQ, r(17) = .03, p = .88;  BNT score, r(18) = -0.06, p = .78; 

attention, r(18) = .23, p = .32; memory, r(18) = .33, p = .16; executive function, r(18) = 

.31, p = .18; and visuospatial scores, r(18) = .37, p = .11.   In addition, learning 

phenotype was not correlated with severity of aphasia AQ r(17) = .05, p = .84 or any 

additional cognitive-linguistic measure. 

 

Discussion 

These results support the hypothesis that non-verbal learning phenotype is 

positively associated with treatment outcomes.  We propose that many skills necessary 

for successful non-linguistic category learning (stimulus processing, hypothesis 

formation, feedback monitoring and integration) likely play an important role in the 

relearning or re-accessing of language brought about through therapy.  Effect size was 

not associated with additional cognitive-linguistic measures, nor was learning phenotype 

predicted by these measures.  Findings support the proposal that learning ability is an 

additional, unexplored factor contributing to aphasia rehabilitation with the potential for 

improving the predictability of outcomes.   
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